Evidence-based Emergency Department Evaluation of Pediatric Blunt Abdominal Trauma

Nathan Kuppermann, MD, MPH
University of California, Davis School of Medicine
Departments of Emergency Medicine and Pediatrics

July 11th, 2014

Western Pediatric Trauma Conference
San Diego, California
Disclosure

• No financial relationships or conflict of interests
Objectives

• Epidemiology of pediatric abdominal trauma
• Clinical evaluation for intra-abdominal injury (IAI)
 – History and physical examination
 – Laboratory testing
• Indications for abdominal CT
 – Prior evidence
 – UC Davis Pilot Study
 – PECARN multicenter study
Case Presentation

• 10 y.o. female slipped off 6 foot fence, landed on right wrist and shoulder
• Difficulty breathing, R wrist and shoulder pain
• Denies LOC, neck, chest, abd, back pain
• Physical Examination
 – Crying but consolable, BP 100/60, HR 90, RR 20
 – Head/neck/chest/back: atraumatic
 – Abdomen: unclear if TTP, but distracted
 – Extremity: right wrist deformity
 – Neuro: GCS 15
Epidemiology of Pediatric Trauma

• Leading cause of death in children > 1 year
 – 70% : Traumatic brain injury
 – 25%: Abdominal and thoracic

• Preventable traumatic deaths/morbidity due to unrecognized and under-treated IAI

• More than 600,000 children with abdominal trauma evaluated in EDs each year
Epidemiology of Pediatric IAI

• Most common mechanisms of injury:
 – MVC, auto vs. pedestrian, falls

• Frequency of injured organs
 – Spleen: 40%
 – Liver: 40%
 – Kidney: 30%
 – Bowel: 15%

• Compared to adults:
 – Larger organs, less abdominal wall protection
 – Pliable chest wall: energy transferred to organs
Epidemiology of Pediatric IAI

• Evaluation particularly difficult in children
 – 20-30% with IAIs have normal abdominal exam
 – Much controversy remains over evaluation

• Limited evidence for clinical decision-making
 – 15-25% of children with abd. trauma undergo CT
 – Fewer than 10% of abdominal CTs demonstrate IAI
 – Few patients with IAI require specific therapy
Controversies in Pediatric IAI

• Reliability of the physical examination
• Role of laboratory tests
• Bedside ultrasound: Utility in children?
• Indications for abdominal CT
 – Abdominal CT is reference standard, but has risks
 – Varying acceptance between specialists in restricting CT for identification of small findings

Sokolove/Kuppermann/Holmes 2012
Patient History and IAI

• Mechanism of injury
• Chest injury and costal margin tenderness associated with missed IAI
• Helpful mechanistic injury patterns
 – MVC with lap belt: bowel and mesenteric injuries
 – Handlebar injury: pancreas and duodenum
 – Abuse: liver and spleen

• Be cognizant of mechanism and ribs!
Handlebar Injury
Abdominal Examination and IAI

• Abdominal tenderness
 – Increased risk of IAI after adjusting for other findings
 – Adjusted odds ratio = 5.8 (95% CI 3.2, 10.4)
 – Approximately 80% of alert trauma patients with IAI present with abdominal tenderness

• Low GCS complicates examination

• **Seat belt injury pattern**: hollow viscus, solid organ, lumbar spine

Seat Belt Sign
Seat Belt Injury

- Injury pattern seen in children > adults
- Flexion over lap belt (even w/shoulder harness)
- GI injuries in particular; lumbar spine fracture
- Prospective study after MVC
 - 46/390 with “Seat Belt Sign”
 - 30% (18-46%) with IAI

Sokolove/Kuppermann/Holmes 2005
Mental Status and IAI

• Decreased level of consciousness
 – Impaired ability to perceive abdominal pain
 – Physical examination unreliable in these patients

• Mental status in patients with IAI
 – GCS < 15 in ~ 45%
 – GCS < 14 in ~ 30%

Laboratory Testing and IAI

• Multiple laboratory tests have been used to screen children for possible IAI
 – AST, ALT, hematocrit, lipase, amylase, HCO3, UA

• Prior studies: conflicting results, limited in design (sample size, retrospective)

• Fundamental question...what is the marginal benefit over physical examination?
Hematuria

• Gross hematuria: 50% with IAI → obtain CT!
• Microscopic hematuria
 – Present in 30-40% of children with IAIs
 – IAI present in ~25% with microscopic hematuria

• Does microscopic hematuria add marginal benefit to examination as a predictor of IAI?
 – Physical exam + > 5 rbc/hpf = Sensitivity of 98.6%
 – Many suggested cutoffs for microscopic hematuria
 – Controversy remains owing to conflicting results

Hematocrit

- *Obtaining hematocrit is routine, but is it useful?*
 - Delay between significant blood loss and hematocrit drop (~2 hrs)
- Hematocrit < 30% significant predictor of IAI
 - Large retrospective study
 - Prospective studies
- Dropping hematocrit levels associated with IAI
 - Unclear if serial hematocrit levels are useful screen for otherwise unsuspected IAI

Ebert 1941, Taylor 1994, Holmes/Kupfermann 2002
Transaminases

• Several studies show correlation between elevated AST and ALT and hepatic injuries
• Degree of elevation does not correlate with grade of liver injury
• AST >200 or ALT >125 best predictor of IAI
• ALT > AST in face of liver injury suggests injury > 12 hours old

Holmes/Kuppermann 2002,9; Baxter 2007
Amylase and Lipase

• Used to identify pancreatic/bowel injuries

• Elevated amylase often salivary

• In pancreatic injury, enzymes increase 24 – 48 hours after the injury

• Not a useful predictor of IAI in pediatric trauma patients

Radiologic Imaging in Pediatric Blunt Abdominal Trauma
Abdominal Ultrasound (FAST)
Abdominal Ultrasound in Pediatric Trauma

• Rapid evaluation at patient bedside
 – Hemoperitoneum (FAST examination)
 – Solid organ injury and hemoperitoneum

• Frequently used in evaluation of adult trauma

• Less frequently performed in pediatric trauma
 – <15% in recent PECARN observational study
Abdominal Ultrasound in Pediatric Trauma

• Not as sensitive as CT for IAI

• Meta-analysis of pediatric trauma studies
 – Sensitivity for hemoperitoneum: 80% (76-84%)
 – Sensitivity for all IAI: 66% (56-75%)
 – LR (+): 14.5 and LR (-): 0.36

• Clinical utility unclear in pediatric trauma (RCT currently ongoing...)

Holmes 2007
Abdominal Ultrasound in Pediatric Trauma

• May allow risk stratification for CT scan
 – Best performance in hypotensive children
 – Negative FAST exam *may* decrease abdominal CT in children at low risk (<10%) for IAI

• Clinical implications unclear in children at substantial risk for IAI
 – Ultrasound (+) → Abdominal CT
 – Ultrasound (-) → Abdominal CT

Menaker/Kuppermann/Holmes, 2001, 2012
Abdominal Ultrasound in Pediatric Trauma

Ultrasound should not replace CT, and may or may not confer benefit in initial evaluation

Arguments against:
- Insufficient sensitivity
- Most IAlS managed non-operatively
- False sense of security
- “Over-triage” to the OR

Arguments for:
- Sensitive in unstable pts
- Bedside availability
- May decrease CT use in low risk patients
- “Risk stratification”/CT prioritization
CT for Pediatric Trauma

• Gold standard for diagnosis of IAI
 – Excellent sensitivity for solid organ injuries
 – IV contrast needed, but not oral contrast

• Drawbacks and Risks
 – Pharmacological sedation
 – Transfer outside the ED
 – Costs
 – Radiation exposure (500x that of CXR)
What’s the current evidence in children?

• No single-center study has identified criteria that identify all IAIs with great confidence
• Most pediatric studies small, retrospective, not adjusted for all important variables
• More recent data starting to clarify best approach... *multicenter data was needed!*
Indications for Abdominal CT

• Prospective observational study of 1,095 children to derive a clinical prediction rule
 – 107 with IAI
• Explicit entry criteria, age <16 years
• 664 with definitive diagnostic tests and remainder with clinical (telephone) follow-up
• Performance of decision instrument:
 – Sensitivity: 98% (95% 93, 100%)
 – NPV: 99.6% (95% 99, 100%)
Indications for Abdominal CT

• Variables in the Clinical Prediction Rule:
 – Low systolic blood pressure
 – Abdominal tenderness
 – Femur fracture
 – Elevated liver enzymes:
 • AST > 200 U/L or ALT > 125 U/L
 – Urinalysis > 5 rbc/hpf
 – Initial hematocrit < 30%
Validation of Clinical Prediction Rule

• Prospective, observational study of 1324 children to validate the prediction rule
• Children < 18 years, all imaged with CT
• ED physician documented patient history and physical examination before CT scan
• 157 (14%) with IAI

Holmes/Kuppermann 2009
Validation of Clinical Prediction Rule

- Sensitivity: 95% (95% CI 90, 98%)
- Specificity: 37% (95% CI 34, 40%)
- PPV: 20% (95% CI 17, 23%)
- NPV: 98% (95% CI 96, 99%)
- 8 missed pts; 1 non-therapeutic laparotomy (serosal tear and mesenteric hematoma)

The prediction rule requires further refinement/validation in multicenter setting...

Holmes/Kuppermann 2009
PECARN Clinical Prediction Rule

• Prospective multicenter study 2007 - 2010
 – < 18 years with blunt abdominal trauma
 – Clinical data recorded before abd CT (if done)
 – Follow-up obtained on all patients:
 • Discharged patient: Telephone follow-up
 • Admitted patients: medical record review

• Primary outcome: IAI requiring therapy (IAI\text{AI})
 – Recursive partitioning analysis
 – 761 (6.3%) with IAI and 203 (1.7%) with IAI\text{AI}
Prediction Rule for IAIAl (n=12,044)

Abdominal wall trauma
 No
 Abdomen tender
 No
 Thoracic trauma
 No
 Abdominal pain
 No
 ↓ Breath sounds
 No
 Emesis
 No
 1,963 patients
 112 (5.7%) IAIAl
 826 patients
 38 (4.6%) IAIAl
 2,532 patients
 36 (1.4%) IAIAl
 955 patients
 6 (0.6%) IAIAl
 305 patients
 2 (0.7%) IAIAl
 34 patients
 1 (2.9%) IAIAl
 395 patients
 2 (0.5%) IAIAl
 5,034 patients
 6 (0.1%) IAIAl
 1,234 CT scans (25%)
PECARN Prediction Rule for IAI^{AI}

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>%, (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>197 / 203</td>
<td>97.0% (93.7, 98.9%)</td>
</tr>
<tr>
<td>Specificity</td>
<td>5,028 / 11,841</td>
<td>42.5% (41.6, 43.4%)</td>
</tr>
<tr>
<td>NPV</td>
<td>5,028 / 5,034</td>
<td>99.9% (99.7, 100%)</td>
</tr>
<tr>
<td>PPV</td>
<td>197 / 7,010</td>
<td>2.8% (2.4, 3.2%)</td>
</tr>
<tr>
<td>LR (-)</td>
<td>0.07</td>
<td>(0.03, 0.15)</td>
</tr>
</tbody>
</table>
IAI^{AI} Not Identified by the Rule

<table>
<thead>
<tr>
<th>Age</th>
<th>Mech</th>
<th>Clinical</th>
<th>Injury</th>
<th>Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>2yr</td>
<td>Auto-Ped</td>
<td>Hematuria</td>
<td>Renal</td>
<td>Blood Rx</td>
</tr>
<tr>
<td>2yr</td>
<td>Fall</td>
<td>↑ LFTs</td>
<td>Liver, GI</td>
<td>IV fluid</td>
</tr>
<tr>
<td>16yr</td>
<td>MCA†</td>
<td>Femur Fx, hematuria</td>
<td>Spleen, GI</td>
<td>Angio</td>
</tr>
<tr>
<td>17yr</td>
<td>MVC</td>
<td>ETOH, hematuria</td>
<td>Spleen, Renal</td>
<td>Angio</td>
</tr>
<tr>
<td>17yr</td>
<td>MVC</td>
<td>Distract inj, hematuria</td>
<td>Spleen</td>
<td>Angio</td>
</tr>
<tr>
<td>17yr</td>
<td>MVC</td>
<td>ETOH, thorax tenderness</td>
<td>Spleen</td>
<td>Angio</td>
</tr>
</tbody>
</table>
Back to our Case...

• 10 y.o. female slipped off 6 foot fence, landed on right wrist and shoulder
• Difficulty breathing, R wrist and shoulder pain
• Physical Examination
 – Crying but consolable, BP 100/60, HR 90, RR 20
 – Head/neck/chest/back: atraumatic
 – Abdomen: unclear if TTP, but distracted
 – Extremity: right wrist deformity
 – Neuro: GCS 15
Labs and Radiology

- Hematocrit: 34%
- Urinalysis: no hematuria
- ALT: 250 U/L
- CXR: normal
- Right shoulder: normal
- Right wrist: angulated ulna/radius fracture
Summary

• High risk physical examination findings for IAI
 – Low GCS: unable to evaluate if at risk for IAI
 – Abdominal wall trauma: contusion/abrasion/seat belt sign
 – Abdominal tenderness

• High risk laboratory findings for IAI
 – Elevated AST/ALT
 – Hematuria: especially gross hematuria
 – Low hematocrit: <30%
Summary

• Exact role of abdominal ultrasound (FAST) unclear in children
 – Use if hypotensive to direct management
 – May risk stratify children for CT scan
 – May obviate CT scan in low risk children

• Abdominal CT is reference standard for IAI
 – Use in children with high risk findings
 – Use in evidence-based fashion for all others, and be cognizant of radiation risks