An In Situ Simulation-Based Educational Outreach Project For Pediatric Trauma Care in a Rural Trauma System

Lilly Bayouth, MD
Sarah Ashley, MD
Jackie Brady, BSN, RN
Bryan Lake, BS, BSN, RN
Morgan Keeter, MSN, RN, NE-BC
David Schiller, EMT-P
Walter C. Robey III, MD, FACEP
Stephen Charles, PhD, CHSE
Eric A. Toschlog, MD, FACS, FCOM
Shannon W. Longshore, MD, FAAP, FACS

Disclosures

This study was supported by the Childress Institute for Pediatric Trauma.

Background

• Traumatic injury is the leading cause of death in children (0-17y)\(^1\)
• 90% of injured children will not receive care at a pediatric trauma center or children’s hospital\(^2\)
• Despite regionalization of trauma systems, outcome disparities between urban and rural trauma patients persist\(^3,4\)
• Existing standardized resuscitation courses offer minimal education in pediatric trauma care

Potential utility for in situ simulation-based training as an assessment and educational intervention tool in trauma care
• Partnerships between academic and community hospitals improve outcomes in pediatric trauma care\(^5\)

Aim

The aim of this study is to:

(1) identify targets for educational intervention at three referral community EDs serving rural Eastern North Carolina
(2) increase provider experience via pediatric trauma simulations and debriefings

Materials & Methods: Sample

• Prospective study of simulation-based pediatric trauma resuscitation
• Study location: Three highest volume referral hospitals out of the 22 that refer to this level one trauma center
Materials & Methods: Simulation

- In situ simulations using high fidelity mannequins (SimBaby, SimJunior) performed in the outreach hospital’s ED resuscitation bay
- SimView® was used to record the simulation and to perform the debriefing

Materials & Methods: Evaluation

- Pre and post-test surveys assessed provider comfort performing 13 specific skills
- Video recording and review of the simulations: scored for successful completion of 36 tasks essential to initial trauma stabilization care
- Second visit for reassessment

Materials and Methods: Analysis

- Independent t-test analysis of pre- and post-simulation mean survey responses
- Primary outcomes:
 – improved comfort performing skills
 – team performance during resuscitation
- Secondary outcome: focus group discussion

Results: Study Population

- N = 99
 – 19 MDs, 65 RNs, 5 RRTs, 10 other

Results: Survey

<table>
<thead>
<tr>
<th>Simulation Task</th>
<th>df</th>
<th>t-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant Airway</td>
<td>10</td>
<td>-1.872</td>
<td>0.046</td>
</tr>
<tr>
<td>Child Airway</td>
<td>10</td>
<td>-1.515</td>
<td>0.080</td>
</tr>
<tr>
<td>Infant IV</td>
<td>10</td>
<td>-1.911</td>
<td>0.043</td>
</tr>
<tr>
<td>Infant IO</td>
<td>10</td>
<td>-1.684</td>
<td>0.062</td>
</tr>
<tr>
<td>Child IV</td>
<td>10</td>
<td>-1.066</td>
<td>0.150</td>
</tr>
<tr>
<td>Blood Administration</td>
<td>10</td>
<td>-1.293</td>
<td>0.113</td>
</tr>
<tr>
<td>Fluid Selection/Administration</td>
<td>10</td>
<td>-2.010</td>
<td>0.036</td>
</tr>
<tr>
<td>Infant C-Spine Immobilization</td>
<td>10</td>
<td>-2.394</td>
<td>0.019</td>
</tr>
<tr>
<td>Pediatric Chest Tube Placement</td>
<td>10</td>
<td>-2.101</td>
<td>0.031</td>
</tr>
<tr>
<td>Obtaining Radiographic Images</td>
<td>10</td>
<td>-2.234</td>
<td>0.023</td>
</tr>
<tr>
<td>Initiating Transport</td>
<td>10</td>
<td>-2.925</td>
<td>0.042</td>
</tr>
<tr>
<td>Use of Broselow Tape</td>
<td>10</td>
<td>-2.341</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Results: Video Recordings

- Mean number of tasks that needed improvement per simulation:
 – 15.2 (initially) improving to 9.7 (second visit)
- Deficiencies most common among all simulations:
 – failure to obtain additional history (75%)
 – beginning secondary survey exam (58.33%)
 – log rolling appropriately and examining the back (66.67%)
 – calling for transport within 5 minutes (50%)
 – calculating appropriate medication dosages (50%)
Results: Focus Groups

<table>
<thead>
<tr>
<th>Theme</th>
<th>Sample Responses</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants used the simulation scenarios to improve teamwork</td>
<td>“Teamwork is very important and [simulation] has helped the team. The [simulation] reinforces that everyone needs designated roles.”</td>
<td>23.26</td>
</tr>
<tr>
<td></td>
<td>“Teamwork has improved, especially with people you haven’t worked with before.”</td>
<td></td>
</tr>
<tr>
<td>Participants’ confidence level has increased in handling pediatric traumas</td>
<td>“I feel more confident in pediatric trauma care. Some of the new things also feel the same.”</td>
<td>16.28</td>
</tr>
<tr>
<td></td>
<td>“I can feel better about organizing patient care scenarios in real life.”</td>
<td></td>
</tr>
<tr>
<td>Participants changed behavior based upon reflection of their performance during simulation scenarios</td>
<td>“Pediatric imaging standards went out to all providers.”</td>
<td>13.95</td>
</tr>
<tr>
<td></td>
<td>“I’ve been able to use the pediatric imaging study information.”</td>
<td></td>
</tr>
<tr>
<td>Communication between Vidant Medical Center and regional hospitals has improved</td>
<td>“Putting a face to who we talk to really helps and is very beneficial. This helps build trust with the ER team and the trauma team.”</td>
<td>13.95</td>
</tr>
<tr>
<td></td>
<td>“It’s made it easier and more comfortable to reach out.”</td>
<td></td>
</tr>
<tr>
<td>Participants remembered their mistakes made during the simulation</td>
<td>“I made a mistake by not using the stylet with the ET tube and didn’t use a collar.”</td>
<td>4.65</td>
</tr>
<tr>
<td></td>
<td>“I remember lack of communication and forgetting to talk to the patient.”</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- Simulation-based education improves both provider comfort and performance
- Community education and outreach improves relationships and communication with local healthcare providers
- Simulation-based training will improve future pediatric trauma patient care and potentially help reduce cost of this care in Eastern North Carolina

Future Study

- Expansion to include remaining regional referral hospitals and additional simulation vignettes based on identified performance gaps
- Follow up study comparing patient outcomes and cost analysis, prior to and after implementation of this simulation project

References